FடபKㅌ

Model 187 \& 189

True RMS Multimeter

Getting Started

LIFETIME LIMITED WARRANTY

Each Fluke 20, 70, and 180 Series DMM purchased after October 1, 1996 will be free from defects in material and workmanship for its lifetime. This warranty does not cover fuses, disposable batteries and damage from neglect, misuse, contamination, alteration, accident or abnormal conditions of operation or handling, including overvoltage failures caused by use outside the DMMs specified rating, or normal wear and tear of mechanical components. This warranty covers the original purchaser only and is not transferable.

For ten years from the date of purchase, this warranty also covers the LCD. Thereafter, for the lifetime of the DMM, Fluke will replace the LCD for a fee based on then current component acquisition costs.

To establish original ownership and prove date of purchase, please complete and return the registration card accompanying the product. Fluke will, at its option, repair at no charge, replace, or refund the purchase price of a defective product purchased through a Fluke authorized sales outlet and at the applicable international price. Fluke reserves the right to charge for importation costs of repair/replacement parts if product purchased in one country is sent for repair elsewhere.

If product is defective, contact your nearest Fluke authorized service center to obtain return authorization information, then send the product to that service center, with a description of the difficulty, postage and insurance prepaid (FOB Destination). Fluke assumes no risk for dam age in transit. Fluke will pay return transportation for product repaired or replaced in-warranty. Before making any non-warranty repair, Fluke will estimate cost and obtain authorization, then invoice you for repair and return transportation.
THIS WARRANTY IS YOUR ONLY REMEDY. NO OTHER WARRANTIES, SUCH AS FITNESS FOR A PARTICULAR PURPOSE, ARE EXPRESSED OR IMPLIED. FLUKE SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OR LOSSES, INCLUDING LOSS OF DATA, ARISING FROM ANY CAUSE OR THEORY. AUTHORIZED RESELLERS ARE NOT AUTHORIZED TO EXTEND ANY DIFFERENT WARRANTY ON FLUKE'S BEHALF. Since some states do not allow the exclusion or limitation of an implied warranty or of incidental or consequential damages, this limitation of liability may not apply to you. If any provision of this warranty is held invalid or unenforceable by a court or other decision-maker of competent jurisdiction, such holding will not affect the validity or enforceability of any other provision.

\author{
Fluke Corporation
 P.O. Box 9090
 Everett, WA 98206-9090
 U.S.A.
 [^0]}

Table of Contents

TitlePage
Introduction 1
Contacting Fluke 1
Safety Information 1
Rotary Switch 4
Pushbuttons 4
Understanding the Display 9
Setup Selections 14
Parts 16
Safety and Compliances 16
Feature Summary 17
Physical Specifications 18
Basic Specifications 19
Detailed Accuracy Specifications 20
Frequency Counter Sensitivity 26
Burden Voltage (A, mA, $\mu \mathrm{A}$) 26
Input Characteristics $\stackrel{N}{V}$

True RMS Multimeter

Introduction

This Getting Started Manual provides basic information on Models 187 and 189. Refer to the Users Manual on the accompanying CD-ROM for complete operating instructions.

Contacting Fluke

To order accessories, receive assistance, or locate the nearest Fluke distributor or Service Center, call:
USA: 1-888-993-5853 Canada:1-800-363-5853
Europe: +31 402-678-200 Japan: +81-3-3434-0181
Singapore: +65-738-5655
Anywhere in the world: $+1-425-446-5500$
Address correspondence to:
Fluke Corporation Fluke Europe B.V.
P.O. Box 9090, P.O. Box 1186,

Everett, WA 98206-9090 5602 BD Eindhoven USA

The Netherlands
Visit us on the World Wide Web at:www.fluke.com

Safety Information

The Fluke Model 187 and Model 189 True RMS Multimeters (hereafter referred to as the "meter") comply with:

- EN61010.1:1993
- ANSI/ISA S82.01-1994
- CAN/CSA C22.2 No. 1010.1-92
- 1000 V Overvoltage Category III, Pollution Degree 2
- 600V Overvoltage Category IV, Pollution Degree 2
- UL 3111-1

Use the meter only as specified in the Users Manual.
Otherwise, the protection provided by the meter may be impaired.

A Warning identifies conditions and actions that pose hazards to the user. A Caution identifies conditions and actions that may damage the meter or the equipment under test.

Safety Information

\triangle Warning

To avoid possible electric shock or personal injury, follow these guidelines:

- Do not use the meter if it is damaged. Before you use the meter, inspect the case. Look for cracks or missing plastic. Pay particular attention to the insulation surrounding the connectors.
- Inspect the test leads for damaged insulation or exposed metal. Check the test leads for continuity. Replace damaged test leads before you use the meter.
- If this product is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.
- Do not use the meter if it operates abnormally. Protection may be impaired. When in doubt, have the meter serviced.
- Do not operate the meter around explosive gas, vapor, or dust.
- Do not apply more than the rated voltage, as marked on the meter, between terminals or between any terminal and earth ground.
- Before use, verify the meter's operation by measuring a known voltage.
- When measuring current, turn off circuit power before connecting the meter in the circuit. Remember to place the meter in series with the circuit.
- When servicing the meter, use only specified replacement parts.
- Use caution when working above 30 V ac rms, 42 V peak, or 60 V dc. Such voltages pose a shock hazard.
- Avoid working alone.

Safety Information (cont.)

\triangle Warning

- When using the probes, keep your fingers behind the finger guards on the probes.
- Connect the common test lead before you connect the live test lead. When you disconnect test leads, disconnect the live test lead first.
- Remove test leads from the meter before you open the battery door.
- Do not operate the meter with the battery door or portions of the cover removed or loosened.
- To avoid false readings, which could lead to possible electric shock or personal injury, replace the batteries as soon as the low battery indicator ($\dagger \mathbf{+}$) appears.
- Use only type AA batteries, properly installed in the meter case, to power the meter.
- To avoid the potential for fire or electrical shock, do not connect the thermocouples to electrically live circuits.

Caution

To avoid possible damage to the meter or to the equipment under test, follow these guidelines:

- Disconnect circuit power and discharge all high-voltage capacitors before testing resistance, continuity, diodes, or capacitance.
- Use the proper terminals, function, and range for your measurements.
- Before measuring current, check the meter's fuses and turn power OFF to the circuit before connecting the meter to the circuit.

Rotary Switch

Turn the meter on by selecting any measurement function (identified with white letters around the rotary switch). The meter presents a standard display for that function (range, measurement units, modifiers, etc.) The display may also be influenced by some of the choices made in Setup.
Use the blue button to select any rotary switch alternate function (labeled in blue letters). You can also use other buttons to choose modifiers for the selected function.

When you turn the rotary switch from one function to another, a display for the new function appears. Button choices made in one function do not carry over into another function.
With Model 189, a VIEW MEM switch position is available.
Each position is described in Table 1.

Pushbuttons

The buttons activate features that augment the function selected with the rotary switch. The buttons are described in Table 2.

Use the blue button (\bigcirc) to access functions labeled in blue for some of the rotary switch positions. Table 1 defines all blue button functions.

Use the yellow button \qquad) followed by other buttons to access additional features. These features appear in yellow above the appropriate keys. Table 2 defines yellow button features. This manual identifies the yellow button feature in parentheses following the button sequence . For example, activating the FAST MN MX mode appears as \qquad min max (FAST MN MX).

The following yellow button features are not available on Model 187: (YES), (NO), (LOGGING), and (SAVE).

Table 1. Rotary Switch Selections

Position	Rotary Switch Function	Blue Key Function
${ }_{\text {dв }} \tilde{\mathbf{V}}$	AC voltage measurement from 0 V to 1000.0 V	$d B$ over $A C, A C$ over dB
${ }_{\mathrm{dB}} \tilde{\mathbf{m V}}$	AC millivolt measurement from 0 mV to 3000.0 mV	dB over $A C, A C$ over dB
${ }_{\text {actdc }} \overline{\overline{\mathbf{V}}}$	DC voltage measurement from 0 V to 1000.0 V	AC over DC (AC in primary display, DC in secondary display), DC over AC, ac+dc
$\text { ac+dc } \overline{\mathrm{mV}}$	DC millivolt measurement from 0 mV to 3000.0 mV	AC over DC (AC in primary display, DC in secondary display), DC over AC, ac+dc
$\begin{gathered} \text { nS } \\ \text { inlil) } \\ \Omega \end{gathered}$	Resistance measurement from 0Ω to $500.0 \mathrm{M} \Omega$	Continuity test Conductance measurement from 0 nS to 50.00 nS
$\begin{aligned} & \vec{\rightarrow} \\ & -1 \end{aligned}$	Capacitance measurement from 0.001 nF to 50 mF	Diode test
${ }^{\circ} \mathrm{C}$	Temperature measurement	Toggles between ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$.

Table 1. Rotary Switch Selections (cont.)

Position	Rotary Switch Function	\bigcirc Blue Key Function
$\stackrel{A}{\mathrm{~mA}}$	AC current measurements from 0 mA to 20.000 A	none
$\mu \mathrm{A} \sim$	AC current measurements from $0 \mu \mathrm{~A}$ to $5000.0 \mu \mathrm{~A}$	none
$\max _{\mathrm{ac}+\mathrm{dc}}^{\mathrm{A}} \bar{\sim}$	DC current measurements from 0 mA to 20.000 A	AC over DC (AC in primary display, DC in secondary display), DC over AC, ac+dc
$\underset{\mathrm{ac}+\mathrm{dc}}{\mu \mathbf{A}}=$	DC current measurements from $0 \mu \mathrm{~A}$ to $5000.0 \mu \mathrm{~A}$	AC over DC (AC in primary display, DC in secondary display), DC over AC, ac+dc
VIEW MEM	(Model 189 only.) Access data held in the meter's memory.	CLEAR MEM.

Table 2. Pushbuttons

Button	Description	Yellow Button Function	Description
Press \square to access "Yellow Button Functions." The \square box and the 24-hour clock appear in the lower corners of the display and the primary display freezes, allowing time to press a second button.			
$\stackrel{i}{\circ}$	Press to turn backlight on or off. Also, in Setup, use the arrow function (\triangleleft) to select the previous digit or item in a list.	SETUP \square (o)	Press to access Setup selections. Press to store a Setup selection and proceed to the next selection.
HOLD	Press to freeze the displayed value. Press again to release the display.	AutoHOLD \square HOLD	Press to begin AutoHOLD; the last stable reading is displayed.
min max	Press to start retaining min, max, and average values. Press successively to display max, min, and average values. Press \square $\mathrm{H}_{2} \% \mathrm{~ms}$ (CANCEL) to stop.	FAST MN MX \square MIN MAX	Press to start FAST MN MX mode, where min and max values for short duration events are stored.
REL \triangle	Press to store the present reading as an offset reference; subsequent readings show only the relative difference from this value. Press again to show the difference as a percentage of the reference.		Press to start and stop Logging (Model 189). Press \square $+\mathrm{Hz}_{\mathrm{Hz} \text { ms }}$ (CANCEL) to stop.

Table 2. Pushbuttons (cont.)

Button	Description	Yellow Button Function	Description
$\triangle \pi$	- In Setup, increment a digit . - In counter functions, select positive pulse slope. - In ohms continuity, select beep on open. - For VIEW MEM (Model 189), refer to Chapter 4 of the Users Manual.	(none)	
∇v	- In Setup, decrement a digit . - In counter functions, select negative pulse slope. - In ohms continuity, select beep on short. - For VIEW MEM (Model 189), refer to Chapter 4 of the Users Manual.	(none)	
RANGE	Exit AUTO and enter MANUAL ranging. In MANUAL, select next input range. Press \square $\mathrm{Hz} \% \mathrm{~ms}$ (CANCEL) to return to AUTO.		Press to save present reading (Model 189)
Hz \% ms	Successively press for frequency, duty cycle, and pulse width.	CANCEL \square $\mathrm{Hz} \% \mathrm{~ms}$	CANCEL any \bigcirc (blue key) function and all other button features.
$\begin{aligned} & \bigcirc \\ & D \end{aligned}$	The blue button. Press to access blue functions on the rotary switch. In Setup, use arrow function (D) to select the next digit or item in a list.	(none)	

Understanding the Display

Display features are shown in Figure 1 and described in Table 3. Major display features are described in the Users Manual.

Note

You can show all display segments (as shown in Figure 1) by pressing HoLD while turning the meter on. Release HoLD to turn off the full display.

Figure 1. Display Features

Table 3. Display Features

Number	Feature	Description
(1)	'11)	Continuity test function is selected.
(2)		Bar Graph. In normal operation 0 (zero) is on the left. In Relative \%, 0 is in the center, negative values are to the left and positive to the right. The polarity indicator left of the bar graph shows the polarity of the input. Both polarity indicators appear in REL\% mode. The arrow right of the bar graph indicates an overload condition. Both arrows appear (without bar graph) when you can use $\bigcirc(\checkmark)$ and $\bigcirc(\nabla)$ to select settings in the setup mode.
(3)	\%	Percent difference in Relative mode is being displayed in the primary display. The reference value is shown in the secondary display
(4)	Δ	Relative ($\operatorname{REL} \Delta$) mode is active. The primary display has been modified by the reference value shown in the secondary display.
(5)	\square	Indicates negative readings. In Relative mode, this sign indicates that the present input is less than the stored reference.
(6)	4	$>30 \mathrm{~V}$ ac and/or dc may be present at the input terminals.
(7)	\pm	Low battery. If flashing, battery failure is imminent, and logging and backlight are disabled. \triangle Warning To avoid false readings, which could lead to possible electric shock or personal injury, replace the battery as soon as the low battery indicator appears.

Table 3. Display Features (cont.)

Number	Feature	Description
(8)	FAST MIN MAX AVG	FAST MN MX mode is enabled. (\square MIN MAX) Minimum reading displayed. Maximum reading displayed. Average reading displayed.
(9)	LOG	Readings are being recorded in memory (Model 189 only.) ($\square+$ REL Δ)
(10)	HOLD	The meter is in Hold mode. (HOLD)
(11)	HOLD	AutoHOLD is active. ($\square+$ HOLD)
(12)	$\begin{gathered} \text { B.B.B.B.B } \\ \text { EL } \end{gathered}$	Primary Display (4-1/2 digit)
		Overload input.
(13)	$\begin{aligned} & \mathrm{V}, \mathrm{mV} \\ & \mathrm{dBm}, \mathrm{dBV} \end{aligned}$	Measurement Units
		V: Volts. The unit of voltage. mV : Millivolt. 1×10^{-3} or 0.001 volts.
		For ac volts functions, reading is shown in decibels of power above or below 1 mW (dBm) or decibels of voltage above or below $1 \mathrm{~V}(\mathrm{dBV})$.

Table 3. Display Features (cont.)

Number	Feature	Description
(13)	$\begin{aligned} & A C+D C \\ & \Omega, k \Omega M \Omega \end{aligned}$	For dc volts and dc amps functions, reading represents the rms total of ac and dc measurements.
		Ω : Ohm. The unit of resistance. $\mathrm{k} \Omega$: Kilohm. 1×10^{3} or 1000 ohms. $\mathrm{M} \Omega$: Megohm. 1×10^{6} or $1,000,000$ ohms.
	nS$\mathrm{nF}, \mu \mathrm{~F}, \mathrm{mF}$	S : Siemens. The unit of conductance. nS: Nanosiemens. 1×10^{-9} or 0.000000001 Siemens.
		F: Farad. The unit of capacitance. nF: Nanofarad. 1×10^{-9} or 0.000000001 farads. $\mu \mathrm{F}$: Microfarad. 1×10^{-6} or 0.000001 farads. mF : Millifarad. 1×10^{-3} or 0.001 farads.
	$\begin{aligned} & { }^{\circ} \mathbf{C},{ }^{\circ} \mathrm{F} \\ & \mathrm{~A}, \mathrm{~mA}, \mu \mathrm{~A} \\ & \mathrm{~Hz}, \mathrm{kHz}, \mathrm{MHz} \end{aligned}$	Degrees Celsius (default) or Fahrenheit
		A: Amperes (amps). The unit of current. mA : Milliamp. 1×10^{-3} or 0.001 amperes. $\mu \mathrm{A}$: Microamp. 1×10^{-6} or 0.000001 amperes.
		Hz : Hertz. The unit of frequency. kHz : Kilohertz. 1×10^{3} or 1000 hertz. MHz : Megahertz. 1×10^{6} or $1,000,000$ hertz.

Table 3．Display Features（cont．）

Number	Feature	Description
（14）	$\begin{array}{ll} \hline 51000 \\ \text { AUTO MANUAL } \end{array}$	Range．Digits display range in use．
（15）	©̀m8日： 8 日 	Time Display．Used with HOLD，AutoHOLD，MIN MAX，FAST MN MX，（SAVE，and LOGGING Model 189）． Elapsed Time Display（ $\bar{\Theta}$ on）：shown in minutes：seconds to maximum of 59：59－used if time since Min，Max，or Logging started is less than 60 minutes．Always used for Min， Max，Avg．Displays hours：minutes after 1 hour． 24－hour Display（ $\bar{\Theta}$ off）：shown in hours：minutes to maximum of 23：59．
（16）		Secondary Display
（17）	MEM 188日	Memory Index Display（Model 189）．Also used for dBm reference resistance． appears when you can use \square $\Delta \pi$ and \square ∇ u to increment or decrement settings．

Setup Selections

The meter allows you to change the default operating configuration of the meter by changing setup options made at the factory. Many of these setup options affect general meter operations and are active in all functions. Others are limited to one function or group of functions. To enter the Setup mode, turn the meter on and press
\qquad ©) (SETUP). In the Setup mode, each press of (\%). (SETUP) saves changes to the last selection and steps to the next option.

Each setup option appears in the primary display in the sequence shown in Tables 4 and 5 .

The options in Table 4 are available only when the preconditions are met. The options in Table 5 are available for all functions. (When measuring dc volts, none of the preconditions in Table 4 are required, and only the selections shown in Table 5 will appear.)
To exit the Setup mode, Press \qquad $\mathrm{Hz} \% \mathrm{~ms}$ (CANCEL). Be sure to save your last selection by pressing \qquad (first.

Table 4. Function Specific Setup Selections

Selection	Precondition	Option	Choices ($\langle\downarrow$)	Factory Default
$\begin{array}{ll} \hline 000.0 \text { of } \\ \text { or } & \\ 000.0 \text { of } \end{array}$	$\begin{aligned} & \text { Temperature }\left({ }^{\circ} \mathrm{C}{ }^{\circ}\right) \\ & \text { selected. } \end{aligned}$	Temperature offset adjust	000.0° to $\pm 100.0^{\circ}$ ($\left.180.0^{\circ} \mathrm{F}\right)$ - Use $\stackrel{\Delta}{\boldsymbol{\nabla}}$ to increment or decrement digit. Use $4 \boldsymbol{\rightharpoonup}$ to select digit. Selected digit flashes.	800.0 ${ }^{\circ}$ (${ }^{\circ}{ }^{\circ}$)
L Int	Model 189 only.	Log interval	MM:SS - Use $\boldsymbol{\rightharpoonup}$ to increment or decrement minute or second values. Use $4>$ to select minute or seconds. Selected values flash.	15:00
dbref	AC volts (ав \widetilde{v} or ${ }_{\mathrm{dB}} \mathrm{mv}$) selected.	dB type	dBm or dBV (m or V flashing) - Use $\downarrow \downarrow$ to select.	dBV
dbref	AC volts (ав \mathbb{V} or ${ }_{\mathrm{aB}} \mathbf{m V}$) and dBm selected.	dBm reference	0001Ω to 1999Ω - Use $\mathbf{\Delta}$ to increment or decrement digit. Use $\boldsymbol{\rightharpoonup} \downarrow$ to select digit.	0600Ω

Table 5．Common Setup Selections

Selection	Option	Choices	Factory Default
bEEP	Beeper	YES or no（flashing）Use 4 to select．	YES
時日	Display digits		咟时
bloff	Backlight time out	MM：SS－Use $\boldsymbol{\rightharpoonup} \boldsymbol{\nabla}$ to increment or decrement minute or second values． Use \downarrow to select minutes or seconds．Selected values flash．Setting value to 00：00 disables timeout．	15：00
Proff	Power off time out	HH：MM－Use $\boldsymbol{\rightharpoonup}$ to increment or decrement hour or minute values． Use \downarrow to select hours or minutes．Selected values flash．	00：15
Hour	24－hour clock	HH：MM－Use $\boldsymbol{\rightharpoonup}$ to increment or decrement hour or minute values． Use \downarrow to select hours or minutes．Selected values flash．	00：00
50－60	Line／Main frequency	60 or 50 （flashing）－Use 4 to select．	60
foty	Restore factory defaults	YES or no（flashing）－Use \downarrow to select．	no

Parts

Replacement parts are listed in Table 6. These parts can be ordered by contacting Fluke. Refer to the Users Manual for a complete list of user-replaceable parts.

Table 6. Parts

Description	Reference Designators	Part Number	Qty
Access Door, Battery / Fuse	MP14	666446	1
Tilt-Stand	MP8	659026	1
Accessory Mount	MP9	658424	1
\triangle Fuse, $0.44 \mathrm{~A}(44 / 100 \mathrm{~A}, 440 \mathrm{~mA}), 1000 \mathrm{~V}$, FAST	F1	943121	1
\triangle Fuse, $11 \mathrm{~A}, 1000 \mathrm{~V}$ FAST	F2	803293	1
Battery, 1.5 V, 0-15 mA, AA Alkaline	H8, H9, H10, H11	376756	4
Fasteners, Battery / Fuse Access Door	H12, H13	948609	2
Screws, Phillip-Head	H4, H5, H6, H7	832246	4
AC70A Alligator Clip (Black)	MP38	738047	1
AC70A Alligator Clip (Red)	MP39	738120	1
TL71 Right-Angle Test Lead Set	MP34	802980	1
Getting Started Manual	(TM1-TM5)	(see footnote)	5
CD-ROM (Contains Users Manual)	(TM6)	1576992	1

Getting Started Manual PNs: English=1547486; French, German, Italian, Dutch=1555282; Danish, Finnish, Norwegian,
Swedish=1555307; French, Spanish, Portuguese=1555294; Simplified Chinese, Traditional Chinese, Korean, Japanese,Thai=1555318

Safety and Compliances

Maximum voltage between any terminal and earth ground.	1000 V dc or rms ac
Compliances - DUAL RATINGS	Complies with IEC 1010-1 to 1000 V Overvoltage Category III, Pollution Degree 2; and IEC 664-1 to 600 V Overvoltage Category IV, Pollution Degree 2 *
Certifications (listed and pending)	CSA per standard CSA/CAN C22.2 No. 1010.1-92 UL per standard UL 3111 TÜV per standard EN 61010 Part 1-1993
Surge Protection	8 kV peak per IEC 1010.1-92
\triangle Fuse Protection for $m A$ or $\mu \mathrm{A}$ inputs \triangle Fuse Protection for A input	0.44 A (44/100 A, 440 mA), 1000 V FAST Fuse 11 A, 1000 V FAST Fuse
Markings	C ϵ, ¢® ${ }_{\text {® }}$, UL, and TÜV
* OVERVOLTAGE (Installation) Categories refer to the level of Impulse Withstand Voltage protection provided at the specified Pollution Degree. - Overvoltage Category III equipment is equipment in fixed installations. Examples include switch gear and polyphase motors. - Overvoltage Category IV equipment is equipment for use at the origin of the installation. Examples include electricity meter and primary over-current protection equipment.	

Feature Summary

Feature	Description
Dual Digital Displays	Primary: 50,000 counts Secondary: 5,000 count Bar graph: 51 segments, updates 40 times/second
Analog Bar Graph	Bright white backlight for clear readings in poorly lighted areas
Facklight with 2 brightness levels	Meter automatically selects best range - instantly
AC+DC true rms, ac rms specified to 100 kHz	Choices for AC only, AC and DC dual display, or AC+DC readings
dBm, dBV	User selectable impedance references for dBm
AutoHOLD	Holds readings on display
Continuity / Open test	Beeper sounds for resistance readings below threshold, or to indicate a momentary open circuit
Fast Bar Graph	51 segments for peaking and nulling
Duty cycle / Pulse width	Measure signed on or off time in \% or milliseconds.
MIN MAX Mode	Record maximum, minimum, and average values. 24-hour clock for MAX or MIN, elapsed time for AVG. FAST MN MX captures peaks to 250 μ sec.
FAST MN MX with 24-hour time stamp	No internal adjustments needed
Closed-Case Calibration	Battery or fuse replaceable without voiding calibration
Battery / Fuse Access Door	Protective holster features
Hi-Impact Overmolded Case	

Physical Specifications

Display (LCD)	Digital: 50000/5000 counts primary display, 5000 counts secondary display; updates $4 /$ second. Analog: 51 segments, updates 40/second.
Operating Temperature	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Temperature Coefficient	$0.05 \times$ (specified accuracy) $/{ }^{\circ} \mathrm{C}\left(<18{ }^{\circ} \mathrm{C}\right.$ or $\left.>28^{\circ} \mathrm{C}\right)$
Relative Humidity	$\begin{aligned} & 0 \% \text { to } 90 \%\left(0^{\circ} \mathrm{C} \text { to } 35^{\circ} \mathrm{C}\right) \\ & 0 \% \text { to } 70 \%\left(35^{\circ} \mathrm{C} \text { to } 55^{\circ} \mathrm{C}\right) \end{aligned}$
Altitude	Operating: $0-2000$ meters per EN61010 CAT III, 1000 V; CAT IV, 600 V $0-3000$ meters per EN61010 CAT II, 1000 V; EN61010 CAT III, 600 V ; CAT IV, 300 V
Battery Type	4 AA Alkaline, NEDA 15A or LR6
Battery Life	72 Hours typical (with backlight off)
Shock Vibration	Per MIL-T-PRF 28800 for Class II instruments
Electromagnetic Compatibility (EMC)	Susceptibility and Emissions: Commercial Limits per EN61326-1
Size	$\begin{aligned} & 10.0 \mathrm{~cm} \times 20.3 \mathrm{~cm} \times 5.0 \mathrm{~cm}(3.94 \text { in } \times 8.00 \mathrm{in} \times 1.97 \mathrm{in}) \\ & \text { (Not Including Accessory Mount) } \end{aligned}$
Weight	545 grams (1.2 lbs.)
Case Sealing	IP-42 per IEC 529, Section 3
Warranty	Lifetime
Calibration Interval	1 year

Basic Specifications

Function	Ranges/Description
DC Voltage	0 to 1000 V
AC Voltage, true RMS	2.5 mV to $1000 \mathrm{~V}-100 \mathrm{kHz}$ bandwidth
Basic Accuracy	DC voltage: 0.025% AC voltage: 0.4%
DC Current	0 to $10 \mathrm{~A} \mathrm{(20} \mathrm{~A} \mathrm{for} 30$ seconds)
AC Current, true RMS	$25 \mu \mathrm{~A}$ to $10 \mathrm{~A}(20 \mathrm{~A}$ for 30 seconds)
Resistance	0 to $500 \mathrm{M} \Omega$
Conductance	0 to 500 nS
Capacitance	0.001 nF to 50 mF
Diode Test	3.1 V
Temperature	$-200{ }^{\circ} \mathrm{C}$ to $1350{ }^{\circ} \mathrm{C}\left(-328^{\circ} \mathrm{F}\right.$ to $\left.2462{ }^{\circ} \mathrm{F}\right)$
Frequency	0.5 Hz to 1000 kHz
LOGGING Intervals (Model 189 only)	At least 288 intervals may be stored. Up to 707 unstable event values (see AutoHOLD) are automatically added to LOGGING memory for viewing only through optional PC software. Additional intervals will be logged up to 995 if the signal is stable.
SAVE Readings (Model 189 only)	Up to 100 readings may be saved by the user in a memory separate from LOGGING memory. These readings may be viewed using VIEW MEM.

Detailed Accuracy Specifications

Accuracy is specified for a period of one year after calibration, at $18{ }^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}\left(64^{\circ} \mathrm{F}\right.$ to $\left.82^{\circ} \mathrm{F}\right)$, with relative humidity to 90 $\%$. Accuracy specifications are given as:

$$
\pm \text { ([\% of reading] + [number of least significant digits]) }
$$

$A C \mathrm{mV}, \mathrm{AC} \mathrm{V}, \mathrm{AC} \mu \mathrm{A}, \mathrm{AC} \mathrm{mA}$, and AC A specifications are ac coupled, true rms and are valid from 5% of range to 100% of range. AC crest factor can be up to 3.0 at full-scale, 6.0 at half-scale except the 3000 mV and 1000 V ranges where it is 1.5 at full scale, 3.0 at half-scale.

			Accuracy				
Function	Range	Resolution	$45 \mathrm{~Hz}-1 \mathrm{kHz}$	20-45 Hz	$1 \mathrm{kHz-10} \mathrm{kHz}$	$10 \mathrm{kHz}-20 \mathrm{kHz}$	$20 \mathrm{kHz}-100 \mathrm{kHz}$
AC mV ${ }^{1,2}$	50.000 mV	0.001 mV	0.4 \% + 40	$2 \%+80$	$5 \%+40$	5.5 \% + 40	$15 \%+40$
	500.00 mV	0.01 mV	$0.4 \%+40$	$2 \%+80$	$5 \%+40$	$5.5 \%+40$	$8 \%+40$
	3000.0 mV	0.1 mV	$0.4 \%+40$	$2 \%+80$	$0.4 \%+40$	$1.5 \%+40$	$8 \%+40$
AC V ${ }^{1,2}$	5.0000 V	0.0001 V	0.4 \% + 40	$2 \%+80$	0.4 \% + 40	$1.5 \%+40$	$8 \%+40$
	50.000 V	0.001 V	0.4 \% + 40	$2 \%+80$	0.4 \% + 40	1.5 \% + 40	8 \% + 40
	500.00 V	0.01 V	$0.4 \%+40$	$2 \%+80$	$0.4 \%+40$	Not specified	Not specified
	1000.0 V	0.1 V	0.4 \% + 40	$2 \%+80$	0.4 \% + 40	Not specified	Not specified
dBV	-52 to -6	0.01 dB	0.1 dB	0.2 dB	0.5 dB	0.5 dB	1.4 dB
	-6 to +34	0.01 dB	0.1 dB	0.2 dB	0.1 dB	0.2 dB	0.8 dB
	+34 to +60	0.01 dB	0.1 dB	0.2 dB	0.1 dB	Not specified	Not specified

1. For the 5,000 count mode, divide the number of least significant digits (counts) by 10 .
2. A residual reading of 8 to 180 digits with leads shorted, will not affect stated accuracy above 5% of range.

			Accuracy			
Function	Range	Resolution	45-1 kHz	20-45 Hz	1-20 kHz	$20 \mathrm{kHz-100} \mathrm{kHz}$
AC $\mu \mathrm{A}$	$500.00 \mu \mathrm{~A}$	$0.01 \mu \mathrm{~A}$	$0.75 \%+20$	$1 \%+20$	$0.75 \%+20$	$6 \%+40$
	5,000.0 $\mu \mathrm{A}$	$0.1 \mu \mathrm{~A}$	$0.75 \%+5$	$1 \%+5$	$0.75 \%+10$	$2 \%+40$
AC mA	50.000 mA	0.001 mA	$0.75 \%+20$	$1 \%+20$	0.75 \% + 20	$9 \%+40$
	400.00 mA	0.01 mA	$0.75 \%+5$	$1 \%+5$	$1.5 \%+10$	$4 \%+40$
AC A	5.0000 A	0.0001 A	$1.5 \%+20$	$1.5 \%+20$	$6 \%+40$	Not specified
	$10.000 \mathrm{~A}^{1}$	0.001 A	$1.5 \%+5$	$1.5 \%+5$	$5 \%+10$	Not specified
1.10 A continuous up to $35^{\circ} \mathrm{C}$, less than 10 minutes $35^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C} .20 \mathrm{~A}$ overload for 30 seconds maximum.						

			Accuracy	Accuracy Dual Display AC or AC+DC ${ }^{3}$		
$\begin{aligned} & \text { Function } \\ & \hline \text { DC mV } \end{aligned}$	Range	Resolution	DC	$\frac{20-45 \mathrm{~Hz}}{2 \%+80}$	$\frac{45 \mathrm{~Hz}-1 \mathrm{kHz}}{\mathrm{0.5} \%+40}$	$1 \mathrm{kHz}-20 \mathrm{kHz}$
DC mV	50.000 mV	0.001 mV	$0.1 \%+20$	$2 \%+80$	$0.5 \%+40$	$6 \%+40$
	500.00 mV	0.01 mV	$0.03 \%+2$			
	3000.0 mV	0.1 mV	$0.025 \%+5$			$2 \%+40$
DC V	5.0000 V	0.0001 V	$0.025 \%+10^{2}$			
	50.000 V	0.001 V	$0.03 \%+3^{2}$			
	500.00 V	0.01 V	$0.1 \%+2^{2}$			Not specified
	1000.0 V	0.1 V	$0.1 \%+2^{2}$			Not specified
DC $\mu \mathrm{A}$	$500.00 \mu \mathrm{~A}$	$0.01 \mu \mathrm{~A}$	$0.25 \%+20$	$1 \%+20$	$1.0 \%+20$	$2 \%+40$
	$5,000.0 \mu \mathrm{~A}$	$0.1 \mu \mathrm{~A}$	0.25 \% + 2	$1 \%+10$	0.75 \% + 10	$2 \%+40$
DC mA	50.000 mA	0.001 mA	$0.15 \%+10$	$1 \%+20$	$0.75 \%+20$	$2 \%+40$
	400.00 mA	0.01 mA	$0.15 \%+2$	$1 \%+10$	$1 \%+10$	$3 \%+40$
DC A	5.0000 A	0.0001 A	$0.5 \%+10$	$2 \%+20$	$2 \%+20$	$6 \%+40$
	$10.000 \mathrm{~A}^{1}$	0.001 A	$0.5 \%+2$	$1.5 \%+10$	$1.5 \%+10$	$5 \%+10$
1. 10 A continuous up to $35^{\circ} \mathrm{C}$, less than 10 min 2. 20 counts in dual display $D C$ or $A C+D C$. 3. See $A C$ conversions notes for $A C m V$ and V.			$35^{\circ} \mathrm{C} \text { to } 55^{\circ} \mathrm{C} .20$	load for 30 seco	maximum.	

Function	Range	Resolution	Accuracy
Resistance 1	500.00Ω	0.01Ω	$0.05 \%+10^{3}$
	$5.0000 \mathrm{k} \Omega$	$0.0001 \mathrm{k} \Omega$	$0.05 \%+2$
	$50.000 \mathrm{k} \Omega$	$0.001 \mathrm{k} \Omega$	$0.05 \%+2$
	$500.00 \mathrm{k} \Omega$	$0.01 \mathrm{k} \Omega$	$0.05 \%+2$
	$5.0000 \mathrm{M} \Omega$	$0.0001 \mathrm{M} \Omega$	$0.15 \%+4^{2}$
	$30.000 \mathrm{M} \Omega$	$0.001 \mathrm{M} \Omega$	$1 \%+4^{2}$
$100.0 \mathrm{M} \Omega$	$0.1 \mathrm{M} \Omega$	$3 \%+2^{4}$	
	$500.0 \mathrm{M} \Omega$	$0.1 \mathrm{M} \Omega$	$10 \%+2^{4}$

Function	Ranges	Resolution	Accuracy
Capacitance 2	1.000 nF	0.001 nF	$2 \%+5$
	10.00 nF	0.01 nF	$1 \%+5$
	100.0 nF	0.1 nF	
	$1.000 \mu \mathrm{~F}$	$0.001 \mu \mathrm{~F}$	
	$10.00 \mu \mathrm{~F}$	$0.01 \mu \mathrm{~F}$	
	$100.0 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}$	
	$1,000 \mu \mathrm{~F}$	$1 \mu \mathrm{~F}$	
	10.0 mF	0.01 mF	$2 \%+10$
Diode Test ${ }^{1}$	50.00 mF	0.01 mF	

1. For the 5,000 count mode, divide the number of least significant digits (counts) by 10 .
2. For film capacitor or better, using Relative mode (REL Δ) to zero residual on 1.000 nF and 10.00 nF range.
3. Least significant digit not active above 10 mF .

Function	Range	Resolution	Accuracy
Frequency	500.00 Hz	$0.01 \mathrm{~Hz}^{1}$	$\pm(0.0050 \%+1)$
	5.0000 kHz	0.0001 kHz	
	50.000 kHz	0.001 kHz	
	999.99 kHz	0.01 kHz	
Duty Cycle	10.00\% to 90.00 \%	0.01 \%	\pm ((voltage range/input voltage) $\times 300$ counts) ${ }^{5,6}$
Pulse Width	$\begin{aligned} & 499.99 \mathrm{~ms} \\ & 999.9 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 0.01 \mathrm{~ms} \\ & 0.1 \mathrm{~ms} \end{aligned}$	\pm (3 \% X (voltage range/input voltage) +1 count $)^{5,6}$
Temperature	-200 to $+1350{ }^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$\pm\left(1 \% \text { of reading }+1^{\circ} \mathrm{C}\right)^{2,3}$
	-328 to +2462 ${ }^{\circ} \mathrm{F}$	$0.1{ }^{\circ} \mathrm{F}$	$\pm\left(1 \% \text { of reading }+1.8{ }^{\circ} \mathrm{F}\right)^{2,3}$
MIN MAX AVG	Response: 100 ms to 80%		Specified accuracy ± 12 counts for changes $>200 \mathrm{~ms}$ in duration. (± 40 counts in AC for changes $>350 \mathrm{~ms}$ and inputs > 25% of range)
FAST MN MX	$250 \mu \mathrm{~s}{ }^{4}$		Specified accuracy ± 100 counts up to 5,000 count (full range) reading. For higher peak readings (to 20,000 counts), specified accuracy $\pm 2 \%$ of reading.
1. Reading will be 0.00 for signals below 0.5 Hz . 2. Accuracy specification is relative to the user-adjustable temperature offset, and assumes ambient temperature stable to $\pm 1^{\circ} \mathrm{C}$. 3. For ambient temperature changes of $\pm 5^{\circ} \mathrm{C}$, rated accuracy applies after 1 hour. 4. For repetitive peaks; 2.5 ms for single events. Use DC function settings below 20 Hz .50 mV range not specified. 5. Frequency greater than 5 Hz , except for VDC, 500 mVDC and 3000 mVDC functions; 0.5 Hz to 1 kHz . Signals centered around trigger levels. 6. Range/input ratios also apply to current functions. 500 counts or 5% for 10 A ranges.			

Frequency Counter Sensitivity

Input Range	Approximate VAC Sensitivity (RMS Sine Wave) ${ }^{1}$		VAC Bandwidth ${ }^{3}$	Approximate VDC Trigger Levels	VDC Bandwidth ${ }^{3}$
	$\begin{aligned} & 15 \mathrm{~Hz} \text { to } \\ & 100 \mathrm{kHz}^{2} \end{aligned}$	$500 \mathrm{kHz}^{2}$			
50 mV	5 mV	10 mV	1 MHz	-5 mV \& 5 mV	1 MHz
500 mV	20 mV	20 mV	1 MHz	5 mV \& 65 mV	1 MHz
3000 mV	500 mV	2000 mV	800 kHz	140 mV \& 200 mV	90 kHz
5 V	0.5 V	2.0 V	950 kHz	1.4 V \& 2.0 V	14 kHz
50 V	5 V	5.0 V	1 MHz	0.5 V \& 6.5 V	$>400 \mathrm{kHz}$
500 V	20 V	20 V	1 MHz	5 V \& 65 V	$>400 \mathrm{kHz}$
1000 V	100 V	100 V	$>400 \mathrm{kHz}$	5 V \& 65 V	$>400 \mathrm{kHz}$

1. Maximum input $=10 \times$ Range (1000 V max). Noise at low frequencies and amplitudes may affect accuracy.
2. Useable at reduced sensitivity to 0.5 Hz and 1000 kHz .
3. Typical frequency bandwidth with full scale (or maximum $2 \times 10^{7} \mathrm{~V}-\mathrm{Hz}$ product) RMS sine wave.

Burden Voltage (A, mA, μA)

Function	Range	Burden Voltage (typical)
$\mathrm{mA}-\mu \mathrm{A}$	$500.00 \mu \mathrm{~A}$	$102 \mu \mathrm{~V} / \mu \mathrm{A}$
	$5,000 \mu \mathrm{~A}$	$102 \mu \mathrm{~V} / \mu \mathrm{A}$
	50.000 mA	$1.8 \mathrm{mV} / \mathrm{mA}$
	400.00 mA	$1.8 \mathrm{mV} / \mathrm{mA}$
A	5.0000 A	$0.04 \mathrm{~V} / \mathrm{A}$
	10.000 A	$0.04 \mathrm{~V} / \mathrm{A}$

Input Characteristics

[^0]: Fluke Europe B.V.
 P.O. Box 1186
 5602 BD Eindhoven
 The Netherlands

